منابع مشابه
Central Series for Groups with Action and Leibniz Algebras
The notion of central series for groups with action on itself is introduced. An analogue of Witt’s construction is given for such groups. A certain condition is found for the action and the corresponding category is defined. It is proved that the above construction defines a functor from this category to the category of Lie–Leibniz algebras and in particular to Leibniz algebras; also the restri...
متن کاملHopf algebras for ternary algebras and groups
We construct an universal enveloping algebra associated to the ternary extension of Lie (super)algebras called Lie algebra of order three. A Poincaré-Birkhoff-Witt theorem is proven is this context. It this then shown that this universal enveloping algebra can be endowed with a structure of Hopf algebra. The study of the dual of the universal enveloping algebra enables to define the parameters ...
متن کاملOperator Algebras, Free Groups and Other Groups
The operator algebras associated to non commutative free groups have received a lot of attention, by F.J. Murray and J. von Neumann and by later workers. We review some properties of these algebras, both for free groups and for other groups such as lattices in Lie groups and Gromov hyperbolic groups. Our guideline is the following list of results for the free group Fn over n ≥ 2 generators. (1)...
متن کاملLie Algebras, Algebraic Groups, and Lie Groups
These notes are an introduction to Lie algebras, algebraic groups, and Lie groups in characteristic zero, emphasizing the relationships between these objects visible in their categories of representations. Eventually these notes will consist of three chapters, each about 100 pages long, and a short appendix. Single paper copies for noncommercial personal use may be made without explicit permiss...
متن کاملLie Groups and Lie Algebras
A Lie group is, roughly speaking, an analytic manifold with a group structure such that the group operations are analytic. Lie groups arise in a natural way as transformation groups of geometric objects. For example, the group of all affine transformations of a connected manifold with an affine connection and the group of all isometries of a pseudo-Riemannian manifold are known to be Lie groups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1987
ISSN: 0019-2082
DOI: 10.1215/ijm/1255989399